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Theoretical and Experimental Study’of the

Evolution of Fields in an Overdimensioned

Waveguide with a Corrugated Surface

J. P. Fenelon and A. Papiernik

Abstract —The field of corrugated wavegnides has been extensively
investigated over a number of years, as such structures have beers used

for antenna feeds [1] - [4]. To obtain an answer to problems arising in

many microwave applications, some labs nse overdimensioned corru-

gated waveguides. In the present work, we propose a theoretical ap-

proach with eigenmodes that enables us to determine tbe values of the

limiting frequencies (frequencies of m modes in the periodic structure)

of an overdimensioned parallelepipeds cavity loaded’ with a thin corruga-

tion as a function of the height of the aperture. In this approach, the
electric field is represented by different analytical functions. We com-
pared the theoretical results with the experimental vahses obtained for
different apertures and periodicities, according to the value of the

wavelength in comparison with the aperture and the period. Each
function is in good agreement in a certain frequency range.

I. INTRODUCTION

In a previous study [5], we have shown experimentally that the

dispersion characteristic of the periodic structure (period If) in

Fig. 1 can be obtained with a cavity loaded by one corrugation

(see Fig. 2). The length on either side of the zero-thickness

corrugation is L = kH (where k equal 1/2, 1, 3/2, . . . accord-

ing to the mode studied). The established mode always has the

same configuration: the m mode (periodic phase shift PH = r

in the periodic structure).

We used the properties described above (for LI = L2 = H/2,

the resonant frequency of this cavity corresponding to the limit-

ing frequency of the periodic structure with the same period H)

and the “magnetic” eigenvectors to determine the expression

for the magnetic fieid.
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Fig. 1. An overdimensioned rectangular periodic waveguide.
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Fig. 2. Equivalent cavity with one corrugation-to represent infinite
periodic structure. Image of the field configuration in this cavity.

To obtain the theoretical resonant frequency, we assume that

in the plane of the zero-thickness corrugation aperture (x – y

plane in Fig. 2) the expressions for the electric field components

are EY = E= = O and EX = f(x), where for f(x) we use a distri-

bution, an exponential, and an inverse variation of the square of

the distance from the aperture (see Fig. 3) and for the magnetic
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field we write that the (fi)Y component equals zero for z = O in

the aperture.

General Expression for the Magnetic Field

In this subsection, we summarize the paper of Kurokawa [61.

Kurokawa derived the magnetic field in cavities using the follow-

ing expression:

where 17a represents the solenoidal magnetic eigenfunctions,

which are related to the corresponding electric eigenfunctions

(Ea) by

2.= ~ curl Z.. (2)

a

The ~~ function in (1) is given by

and the eigenfunctions 4A satisfy the Helmholtz equation.

C?(+A
~=o on S (4)

where S is the closed surface of the volume V and n is the outer

normal unit vector.

By expressing the fields in terms of eigenfunctions and substi-

tuting in Maxwell’s equation when there is no current in the

cavity walls, Kurokawa obtains the following equations:

where

and

where

Therefore the magnetic field can be written as

H= ~Hasa+ ~6hrk (7)
a A

which is recognized as (1)

II. ANALYSIS

A. Expressions for the Electric Component Eigenfunctions

As a result of symmetry we consider only half of the cavity. Its

dimension is L = H/2, where H is the period of the corre-

sponding periodic structure, We attempt to obtain a solution for

the electromagnetic field of the TE modes with respect to the y

direction in the form of a superposition of TE~lP modes.
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Fig. 3. Views of the cavity studied.

For a rectangular parallelepipeds cavity (Fig. 3) the electric

component eigenfunctions [7] are given by

where A ~lP is a normalization factor. To normalize the e~lP we

require that

Then,

where

k~l.=(%’+(:r+(%r
for m=0,1,2, ”;p = 0,1,2,..; and m#p#O. Here a, b,

and L are the dimensions of the parallelepipeds cavity used, and

em and •~ are Neumann factors.

Now, we can determine the value of the (~a)Y component

from (2):

772

abL ()
k:lP – ~

( ).
fi~lP , = -AMIP

m~ ~Y prr
cos —x sin — cos —z,

T k mlp a bL

(9)

B. Expression for the Irrotational Magnetic Component

Eigenfunctions

For the cavity considered here (Fig, 3) and with the homoge-

neous Neumann boundary conditions satisfied we determine (4),

the expression for $i.
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The ~h expressions may be derived by using the general

equation (3) as follows:

where

C. Governing Equation for the Electromagnetic Field

We assume that the electric field in the plane of the zero-

thickness corrugation aperture at x = D is EY = EZ = O and

E,= f(x). In (5), for the electric field expression, we write

(11)

Using expressions (5), (9), and (11), S. and rA can for z = O be

expressed as

0) abL b
Smlp = .—. –A

W:lp — W2 pw 2
mlp

T2

()k~lp – ~

k /
“Cosmt af(x). cos~xdx (12)

mlp D a

1 abL
— . B~lp.r~lP=— —. z

J
Cosot :f(x). cos;xdx. (13)

UP

III. DETERMINATION OF THE RESONANT FREQUENCY

We note that (~)Y = O at z = O, so that we may express the

value of (kOY from (7):

Using (9), (10), (12), and (13), after simplification and substitut-

ing A%lP and B~lp, a straightforward calculation gives

with k~lp = (m~/a)2 +(~/b)2 +( PtT/L)2 and m + P + O SO,

(15) must be decomposed as S~O + Snp = O,where

‘“”=2%32%-H
.J”f(x)cosyxdx

D
(16a)

and

smD=4 ~ ~ ~
(-l)m

‘=1’=’ (32+(%7+(:)2-(32

/“f(x)cos”xdx. (16b)
D a

The roots of (16) give the resonant frequencies for a given ~(x).

For f(x) we use

f’(x) =8(.x-D).

A field singularity appears in the presence of a corrugation

edge, and prompts us to use a field variation in the form of a

distribution.

f(x)= e-k’ where k~=(~)z-[(~)z-(~)’].

The results found in [8] show that an exponential variation can

be a good solution.

1
f(x) =

~(a-ll)’-(a-x)z

On the other handl, the paper by Bethe and Meixner in [9] shows

that the field near the corrugation satisfies this function.

A, Distribution Function [10]

Replacing ~(x) by 8(x – D), (16a) gives summations withl

respect to m which are obtained using the relationships in the

Appendix. For all following equations we put

‘2=(:)2-(:)2
–acos DW 1

sma=
WsinaW ‘F”

Equation (16b) then gives

()
m (-l)” cos:D

.ZixSmp= 41 ~
p=l~=l m2 i- A2

where

.,2=(:)2. [(;)2-W2].

(17)1

(18)

The summations with respect to m are obtained using the

relationships in the Appendk, for those with respect to p, only

one part is calculated with the relations in the Appendix. It is

necessary to distinguish two cases according to the positive or

negative values of A2.

‘The result of a straightforward calculation of (18) gives, by

addition with (17), the equations (19) and (20), whose roots are

the resonant frequencies of the cavity. For AZ> O,

L rA

cos DW ;
cosh D —

—— ..
WsinaW Wtan LW

‘2~vA a = o. (19)
p=l

— sinh rA
a

For AZ< O,

L 2 rA
—

cos DW ~-
cos D —

——–~+25
a

WsinaW + ‘Wtan LW W2
= o. (20)

P.l TA
— sin ITAI

a
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B. Exponential Function [10]

In (16), we substitute e –k. K for f(x), and after integration with respect to x, we obtain

smo
.

=2X
~=1

[
kXe-~J-D)+( -l)m~si nHD-(–l)mkXcosUD 1

(~’-(:f~’)”i~’+(:)’~’}a
and

[
kXe-k~(’-DJ +(–l)mx sin HD–(–l)mkXcos UD

smp=4~ ~
1~=lm=l (~’+(~fy~)”(~’+(:)’k’)x

with Yi = P2 –(L/z-)’W’ and k: =( T/2L)2 – W’. Accord-

ing to the positive or negative values of k: and Y~2, we obtain

different expressions for SnO and S~P. Here, we will only give

the results for Y~2>0 and k: >0. The other values have been

used in a computer program. As a first step, we transform the

products of the denominator in (21) and (22) into summations;

in a second step we use the expressions for ED and Xm in the

Appendix, and in a third step we substitute the new expressions

of (21) and (22) into equation (16). The final formula is

[(2 e-k,(a-D). ‘1 1

Wtan aW – kX tanh kX )

(1 sinh DkX sin DW
+F

x sinh akX – sin aW )

cos DW cosh DkX

[1

T 2 (e-k@D)-~)

+
Wsin aW + kg sinh akX ‘=’ ak~W2 1

(21)

(22)

We determine the resonant frequencies by solving numerically

the previous equation. Similar relationships are found with

other combinations of k: and Y~2.

C. Function

In order to describe the aperture field near the corrugation,

Bethe and Meixner [9] used this function.

1
f(x)=

~(a-D)2-(a-x)’ “

We substitute the above function f(x) into (16a) and (16b) and

after integration with respect to x we obtain [10]

55 ‘m ‘P

( )
‘JO ~(a– D) =0.

()

(24)

‘=lp=ok:lp– ~
c

L’

()

As in the previous sections, we divide this equation into two

(

–kr(a–D) _ 1

)! (-)

–2 ;
parts, S~O and S~p. For S~P

e
we accomplish first of all, the

+
summations with respect to p. Therefore it is necessary to

a ~+1 L2 distinguish two cases according to the positive or negative value
w’

i– T of

[

1 )] ()Y~=m2– : 1W2.
T T

. 2–

()

2 ‘L

25W2 2—Wtan LW For the case where Y;> O, applying the expression for ~P in

m- m’ the Appendix, we obtain

–1 1 ) (=a 2 m JO ~(a– D)

+
()

~Esmo+smp=2 —
)

= O. (25)
~ Y~ tanh ~Y~ kX tanh akX

m = 1 Y~ tanh ‘irrYB
a

1+:—”
[

e–kx(a-D).

1
P=lp2– —

4

-[

TD

1 – sinh y YA
sinh DkX

—
kz ~a +

sinh ~ Y~
sinh akX

)

The previous relationship does not converge quickly, so in order

to improve its convergence, we add and subtract the following

expression.

TD

1

(
JO ~(a– D)

cosh ~ Y~ )
cosh Dki

+* — = o. (23) Y; “

~ Y~ sinh ~ YA
kX sinh ak~

After simplification and substituting Y:,

(26)

S~O + S~~ may be
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Fig. 4. Experimental mounting to determine the resonant frequencies.

written as follows.

( a )

‘“z

2

2EW2

i7

[ ““’$&-& 1
(JO ~(a– D)

+5
)

= o.
~=1

()
m’ - E ‘W’

T

(27)

For the case where Y; <O, (24) becomes after simplification

and using the same manipulation to improve the convergence,

we obtain for S~O + S~P the expression

JO(~(a -D))

m
r La

+(’(:r-’)s,f(;:~D)~=o’28)
m’– — W2

T

The resonant frequencies are obtained by numerically comput-

ing the roots of (27) and (28).

IV. RESULTS

A. Computed Results

To determine resonant frequencies by a numerical computa-

tion we have to solve equations F’(x)= O ((19), (20), (23), (27),

and (28)). For that, we fix the values a, b, c and H; for a first

9
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Fig. 5. Theoretical study with three functions: A distribution, V expcl-
nential, and () 1/SQRT, ❑ Experimental study. Period H = 10 mm.

value of D from the lower bound XO = 2 GHz to the upper

bound ,rF = 3.5 GHz, we determine for two values x~ and x ~

the sign of F(xti)” F(.x~).

When F(x,l)” F(xB) <0, we take the value XC= (XA + xB)/2

and we study the sign of F(xC). F(x~) and F’(x C)oF(x~). We

continue the dichotomy and we obtain the first root. According

to the values of If and D it is possible to obtain one, two, or

three roots between the lower and the upper bound (Figs. 5–8).

These roots correspond to the limiting frequencies of the LEYIO,

LE Yl 1, and LIE Y1.1modes of the trough wave guide with periodic
corrugation [8] since we have realized our theoretical expres-

sions with the superposition of TE~l~ modes.

B. Experimental Methodology

We use a resonator loaded with one removable corrugation

situated between two movable short-circuit plates parallel to the

corrugation (Fig. 4). For a fixed value of H (Ll = L2 = H/2) we

determine for each value of D the value of the resonant

frequencies of this cavity between 2 and 3.5 GHz given by the

sweep oscillator. At the resonance we observe a peak on the

oscilloscope and we read this frequency on the frequency metel.

It is possible to olbserve one, two, or three peak. It corresponds

to the limiting frequencies of LEYIO, LE ~11, and LE ~lz modes

of the trough waveguides with the same periodic corrugation

(same values for H, for D, and for the thickness: e = 5 mm)

(Figs. 5-8).

C. Comparison of Theoretical and Experimental Results

We compared the curves found with the theoretical results

using the three functions and the experimental values obtained

for different apertures and periodicities. We found the follow-

ing.
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Fig. 6. Theoretical study with three functions: A distribution, O.exPo-
nential, and O l/SQRT, ❑ Experimental study. Period H = 30 mm.
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Fig. 7. Theoretical study with three functions: A distribution, O expo-
nential, and O 1/SQRT. ❑ Experimental study. Period H = 50 mm.

1) When we estimate that the field near the corrugation edge

is described by a distribution, the experimental and theoretical

results agree closely when the values of the period are small

compared with the wavelength.

2) When we use Bethe and Meixner’s function, we have very

good results when the period is in the region of the wavelength

and the aperture is small compared with the latter.

0 0
A

A
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o O; OOOOOOQQ

b
10 15 20
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Fig. 8. Theoretical study with three functions: A distribution, O expo-

nential, and O l/SQRT. ❑ Experimental study. period H = 70 mm.

3) As a general rule, it is the exponential function which

provides, in most cases, results which are in good agreement

with experiment. Moreover, it is possible to fully realize the

summations with respect to m and so part of those concerning

p. So, the results are obtained with a short computing time with

a good approximation, the remaining summations having low

values compared with the other numerical values.

V. CONCLUSION

By a theoretical approach with the eigenmodes, we deter-

mined the value of the limiting frequency of an overdimen-

sioned rectangular cavity loaded by a zero-thickness corrugation.

For that, we assumed that the electric field in the corrugation

aperture is a distribution, an exponential variation, and an

inverse variation of the square of the distance from the aper-

ture. The theoretical results are obtained when we write that the

iYY component of the magnetic field equals zero at the top of

the cavity and agrees with experiments. According to the value

of the wavelength in comparison with the aperture and the

period, each function is in good agreement in certain frequency

ranges.

APPENDIX

With some known expressions [11],

Cos m
; ~ = ; Co:::h”ti;x) “ $ ~ o<x<2Tr

“ (-l)” cos?w n coshox

~ “~usinhti=-~ –T<x<r
1 n2 + W2

~ (-l)rn-’msinmx T sinhxB
— —T<x<r

1 m2+B2 – ~ sinh BT ‘
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it is possible to deduce for x = O,

l+=2wt,;hwT-&

~ (–l)m-lrnsinrrrx 7 sin.d

1 m2– A2 ‘~sinwA”
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Design of New Hybrid-Ring Directional

Using A/8 or A/6 Sections

Dong 11Kim and Gyu-Sik Yang

Abstract —A method for designing 1.25A-ring and

Coupler

7k /6-ring 3 dB
directional conplers rising fundamental A/8 or A/6 sections is pro-

posed and their frequency characteristics are analyzed. Furthermore,
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experimental verification has been achieved in a microstrip network

confirming the validity of the design method for a microwave component
with the basic A/8 or A/6 sections proposed in this paper.

1. INTRODUCTION

The hybridl-ring directional coupler was one of the first and

remains one of the most fundamental junctions in the mi-

crowave and millimeter-wave frequency bands [1]–[6] where

one-axis symmet]y is involved. Important properties possessed

by all directional couplers are 1) the output arms are isolated

from each other and 2) the input arms are matched looking into

any arm when the other arms are terminated by matched loads.

Since the conventional, simple Y-junction power dividers do not

possess these properties, directional cpuplers are preferable for

certain applicaticms, for example antenna array feed systems

where the need for minimizing mutual coupling puts a premium

on isolation between the output arms of the power dividers [2].

The two-dimensional structure of stripline facilitates construc-

tion of the feeding network and antenna elements, such as

dipoles, on a single printed circuit board. At high frequencies,

some applications make hybrid-ring couplers preferable to

branch-line and parallel-line couplers; the former has an inher-

ent 90’ phase difference between the output ports. For an

antenna array that is fed by an equiphase, symmetrical, corpo-

rate network, the hybrid-ring directional coupler has a definite

advantage over the parallel-line and branch-line couplers be-

cause no phase-compensating element is necessary. The hybrid-

ring coupler also has a broader bandwidth than the branch-line

coupler [2], [4].

The hybrid-ring, directional coupler is well known as a rat race

ring which is used for a 3 dB directional coupler with the

normalized admittance of I/m of the entire circumference of

the ring [5]. In 1961 Pon proposed a hybrid-ring coupler having

a power-split ratio that is proportional to the square of the

admittance ratio of the two variable admittances in the ring [2].

In 1982, Kim and Naito developed a broad-band design method

of improved hybrid-ring 3 dB directional couplers where the

concept of a hypothetical port was adapted [5]. In 1986, Agrawal

and Mikucki designed a hybrid-ring directional coupler with

arbitrary power dh’isions by adapting Pen’s method to Kim and

Naito’s concept of a hypothetical port [4]. However, all branch-

like couplers, parallel-line couplers, and hybrid-ring couplers,

including the rat-race ring, consist of a common fundamental

A/4 sections. In addition, most microwave components also use

fundamental A/4 lines.

In this paper, however, we propose a design method for l.25A-

ring and 7A \6-ring 3 dB directional couplers using A/8 and

A/6 sections, respectively. In addition, the frequency character-

istics of the couplings, together with the isolations, the return

losses, and the phase differences between the output ports, are

calculated,

II. ANALYSIS AND DESIGN OF A /8- AND A /6-SECTION

3 dB DIRECTIONAL COUPLERS

The conventional hybrid-ring directional coupler has the con-

figuration shown in Fig. 1 [2]. To increase the degree of freedom

of the design, while maintaining symmetry, we can replace the

characteristic admittance YI of the 3A/4 section across the

symmetrical axis AA’ by Y3 and replace the lengths A/4 and

3A/4 of two sections across the symmetrical axis AA’ by A/8
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