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Theoretical and Experimental Studylof the
Evolution of Fields in an Overdimensioned
Waveguide with a Corrugated Surface

J. P. Fenelon and A. Papiernik

Abstract —The field of corrugated wavegunides has been extensively
investigated over a number of years, as such structures have been used
for antenna feeds [1]1-[4]. To obtain an answer to problems arising in
many microwave applications, some labs use overdimensioned corru-
gated waveguides. In the present work, we propose a theoretical ap-
proach with eigenmodes that enables us to determine the values of the
limiting frequencies (frequencies of 7 modes in the periodic structure)
of an overdimensioned paralielepiped cavity loaded with a thin corruga-
tion as a function of the height of the aperture. In this approach, the
electric field is represented by different analytical functions. We com-
pared the theoretical results with the experimental values obtained for
different apertures and periodicities, according to the value of the
wavelength in comparison with the aperture and the period. Each
function is in good agreement in a certain frequency range.

I. INTRODUCTION

In a previous study [5], we have shown experimentally that the
dispersion characteristic of the periodic structure (period H) in
Fig. 1 can be obtained with a cavity loaded by one corrugation
(see Fig. 2). The length on either side of the zero-thickness
corrugation is L = kH (where k equal 1/2, 1, 3/2, -+ accord-
ing to the mode studied). The established mode always has the
same configuration: the 7 mode (periodic phase shift BH =7
in the periodic structure).

We used the properties described above (for L, = L, = H /2,
the resonant frequency of this cavity corresponding to the limit-
ing frequency of the periodic structure with the same period H)
and the “magnetic” eigenvectors to determine the expression
for the magnetic field.

Manuscript received January 17, 1989; revised March 6, 1990.

J. P. Fenelon is with I.LR.C.O.M., Facultédes Sciences, 123, Avenue
Albert Thomas, 87060 Limoges Cedex, France.

A. Papiernik is with the Laboratorire d’Electronique, Université de
Nice, Parc Valrose, 06034 Nice Cedex, France.

IEEE Log Number 9101653.

5

1773

Fig. 1. An overdimensioned rectangular periodic waveguide.
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Fig. 2. Equivalent cavity with one corrugation-to represent infinite
periodic structure. Image of the field configuration in this cavity.

To obtain the theoretical resonant frequency, we assume that
in the plane of the Zero-thickness corrugation aperture (x-y
plane in Fig. 2) the expressions for the electric field components
are £, =F,=0and £, = f(x), where for f(x) we use a distri-
bution, an exponential, and an inverse variation of the square of
the distance from the aperture (see Fig. 3) and for the magnetic
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field we write that the (H ), component equals zero for z =0 in
the aperture.

General Expression for the Magnetic Field

In this subsection, we summarize the paper of Kurokawa [6].
Kurokawa derived the magnetic field in cavities using the follow-
ing expression:

H=Y H,[A Hdo+ LG, [HGC,d (1)
a v A 12
where ﬁa represents the solenoidal magnetic eigenfunctions,
which are related to the corresponding electric eigenfunctions
(E,) by
_ 1 ﬂ
H,= T curl £,.

a

(2)
The é)\ function in (1) is given by

N 1
G, = PN grad ¢, 3
A

and the eigenfunctions ¢, satisfy the Helmholtz equation.

V2, +k3p,=0 inv

ad
ﬂ=0 on S
an

4
where S is the closed surface of the volume V" and n is the outer
normal unit vector.

By expressing the fields in terms of eigenfunctions and substi-
tuting in Maxwell’s equation when there is no current in the
cavity walls, Kurokawa obtains the following equations:

—

{jwu+k§/(a+jwe)}sa=—f(?zXE)'ﬁadS &)
where
S, = ﬁﬁa dv
),
and
J(EXE) G dS=—jop-r, (6)
where
ro=[H-G,dv
= [H-6,
Therefore the magnetic field can be written as
ﬁ= Zﬁasa+26/\rA (7)
a A

which is recognized as (1)

II. ANALYSIS
A. Expressions for the Electric Component Eigenfunctions

As a result of symmetry we consider only half of the cavity. Its
dimension is L= H /2, where H is the period of the corre-
sponding periodic structure. We attempt to obtain a solution for
the electromagnetic field of the TE modes with respect to the y

direction in the form of a superposition of TE,,; , modes.
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Fig. 3. Views of the cavity studied.

For a rectangular parallelepiped cavity (Fig. 3) the electric
component eigenfunctions [7] are given by

mar T pT

(€mip), = — apbA,,,cos — sin 37 sin 7z
Ea (emlp)yzo (8)
oomT T pm
(€mip), =mLBA,, ,sin —Xsin -y cos -z
where A,,,, is a normalization factor. To normalize the e,,,, we

require that

L[+ (e + ()] o =1.

Then,

where

ma\?2 [(aw\> [pm\*?
G- () 4 (5) ()
for m=0,1,2,++;, p=0,1,2,--+; and m# p+#0. Here a, b,
and L are the dimensions of the parallelepiped cavity used, and
€, and €, are Neumann factors.

Now, we can determine the value of the (ﬁa)y component
from 2): ’

2 LAN
kmlp_(;) mw _ wYy pT
€os —x sin —— ¢os —2z.
a b L

©)

(), ===

mlp = mlp k

mlp

B. Expression for the Irrotational Magnetic Component
Eigenfunctions

For the cavity considered here (Fig. 3) and with the homoge-
neous Neumann boundary conditions satisfied we determine (4),
the expression for ¢,.
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The G),\ expressions may be derived by using the general
equation (3) as follows:

. mT ™ p
G, = B, ,mbLsin X008 -y €08 T2
o mir T pT
G\ G, =B, ,aL cos ——xsin B Yeos Tz (10)
a

G,=5 . mir T p
ab cos ——x cos —y §in —— z
mipP a b’ L

where

2
25mepﬂ' 1

3b3L3 k2

mlp

BZ

mip =

C. Governing Equation for the Electromagnetic Field

We assume that the electric field in the plane of the zero-
thickness corrugation aperture at x =D is E,=E, =0 and
E, = f(x). In (5), for the electric field expression, we write

- LTy
(nXE)y=f(x)s1n—b—s1nwt. (11)

Using expressions (5), (9), and (11), s, and r, can for z=0be

expressed as

@ abl b
Smip o, — @ pw 2 mlp
2 m\?
kmlp—(z) a mar dx 12
‘cos wt *COS§ ——
o w fo(x) 008 —=% (12)
1 abL B a mmr . (13
- ——— . . t . - .
Fup on 2 1 COS @ fo(x) cos ; x (13)

III. DETERMINATION OF THE RESONANT FREQUENCY

We note that (H ), =0 at z=0, so that we may express the
value of (H), from (7):

(H)y ( mlp) M1I—7+Z(ém1p) Fmip:

mp

(14)

Using (9), (10), (12), and (13), after simplification and substitut-
ing A%, and B2, , a straightforward calculation gives

( 1) EWl P

D m kmlp (:)

with k2, =(mm /a)* +(m /b)* +(pw /L)* and m+ p # 0 so,
(15) must be decomposed as S, + S,,, = 0, where

T

-]Zf(x)cos i’/L;‘l.l-.-chx

S=(H),=Y% ff(x)cos——xdx 0 (15)

=22
m=

(16a)
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and

i (—Zl)m 2 2
TG ()
-[L:f(x)cos%zxdx. (16b)

The roots of (16) give the resonant frequencies for a given f(x).
For f(x) we use

Spp =4

1 s

m

f(x)=68(x—-D).
A field singularity appears in the presence of a corrugation
edge, and prompts us to use a field variation in the form of a
distribution.

et e i= ()= [(2) ()]

The results found in [8] show that an exponential variation can
be a good solutior.

f(x)=

1
V(@-Dy~(a-x)*

On the other hand, the paper by Bethe and Meixner in [9] shows
that the field near the corrugation satisfies this function.

A. Distribution Function [10]

Replacing f(x) by 8(x — D), (16a) gives summations with
respect to m which are obtained using the relationships in the
Appendix. For all following equations we put

(23]

S —acos DW 1 7
el e /
me . WsinaW o~ W? (7
Equation (16b) then gives
w  om
a 2 o (—1) COSTD
S,.,=4— —_—
m=i2) £ E
where
a\2 T
- (2) [(’1) Wz] a8)

The summations with respect to m are obtained using the
relationships in the Appendix; for those with respect to p, only
one part is calculated with the relations in the Appendix. It is
necessary to distinguish two cases according to the positive or
negative values of A2.

The result of a straightforward calculation of (18) gives, by
addition with (17), the equations (19) and (20), whose roots are
the resonant frequencies of the cavity. For 4% >0,

L wA
cos DW 7 «» cosh D-a—
WsinaW W tan LW_2 z A =0. (19)
p=t —;—sinth
For A%< 0,
L 2 D A
cos DW - - o COSD|—
ot 42 B L1 -0. (20)
WsinaW WtanlLW W =
b sin | A|
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B. Exponential Function [10]
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In (16), we substitute e *+* for f(x), and after integration with respect to x, we obtain

wmT . omw m m
[kxe‘kx(“‘m+(—1) — sin— D —(—1)"k, cos ——-D]
a a a

Smo=2 E a\2 a \2 (21)
m=1 {mz—(-—) WZ}'{m2+(—) k%}
iy T
and
o VT mir m mar
o [kxe‘kx(“‘D)+(~l) —sin—D—(-1) kxcos——D]
a a X
Smp=4 Z Z (22)
p=1lm=

with Y2 =p?—(L/w)*W? and k?=(7/2L)*—W? Accord-
ing to the positive or negative values of k2 and Y2, we obtain
different expressions for S, and S, ,. Here, we will only give
the results for Y2 >0 and k2> 0. The other values have been
used in a computer program. As a first step, we transform the
products of the denominator in (21) and (22) into summations;
in a second step we use the expressions for £, and L, in the
Appendix, and in a third step we substitute the new expressions
of (21) and (22) into equation (16). The final formula is

2| eketa—D). -t 1
WtanalW k tanhk,

1 [sinh Dk, sin DW
+ JR— —
k,\ sinhak, sinaW
cos DW cosh Dk,

(27; )2' (e—k((a—D)_l) }

+ + —
WsinaW = k,sinhak, ak*w'?

1 T
2m
2(_) w2 2=Wtan LW
. a
® 1 -1 1
+ Y | emHuta=D) +
1 T ma
p=1p2 _ . ZYAtanh”“YA k. tanh ak,
.. @D
1 | —sinh TK‘I sinh Dk,
kil o ly ~ sinhak,
wD T
cosh ——Y, cosh Dk, 0 (23)
+ Ta_ ; =y
YASlnhTYA kx sinh akx

; (muxifﬁy

a2

m? + ( — ) kg)
i

We determine the resonant frequencies by solving numerically

the previous equation. Similar relationships are found with
other combinations of k2 and Y2.

C. Function

In order to describe the aperture field near the corrugation,
Bethe and Meixner [9] used this function.

f(x) = - .
V(a-Dy-(a-x)

We substitute the above function f(x) into (16a) and (16b) and
after integration with respect to x we obtain [10]

€€,

J(m”( D)) 0
of —(a— =U.
m=1p=0k2 _(2)2 a

mlp ¢

(24)

As in the previous sections, we divide this equation into two
parts, S, and S,,,. For §,, we accomplish first of all, the
summations with respect to p. Therefore it is necessary fo
distinguish two cases according to the positive or negative value
of

a 2
Y,§=m2—(—)W2.
aw

For the case where YB2 > 0, applying the expression for ¥, in
the Appendix, we obtain

p el

m=1 "y tanh —7¥p
a

S (25)

mo

+Smp=2(

T

The previous relationship does not converge quickly, so in order
to improve its convergence, we add and subtract the following
expression.

(o)

7 (26)

After simplification and substituting Yy, S,,,+S,,, may be
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Fig. 4. Experimental mounting to determine the resonant frequencies.

written as follows.

: i Z(a= )
m=1

a2
o
T
2Laz
. B 1
L a\? a\?
tanh — mz—(—) w? \/mz—(—) w?
T T

(27)

For the case where Y;7 <0, (24) becomes after simplification
and using the same manipulation to improve the convergence,
we obtain for S, + §,,, the expression

Jo( il (a- D))

a

(==}
>z
m=1

~TeT
T
2La
T + 1
7L 2 a\?
tan———\/mz—(——) w? \/mz—(—) w?
a T T

(28)

The resonant frequenciés are obtained by numerically comput-
ing the roots of (27) and (28).

IV. REesuLts

A. Computed Results

To determine resonant frequencies by a numerical computa-
tion we have to solve equations F(x)=0 ((19), (20), (23), 27,
and (28)). For that, we fix the values a, b, ¢ and H; for a first
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Fig. 5. Theoretical study with three functions: a distribution, < expo-
nential, and O 1/SQRT, & Experimental study. Period H = 10 mm.

value of D from the lower bound x,=2 GHz to the upper
bound x = 3.5 GHz, we determine for two values x, and x,
the sign of F(x,)-F(xp).

When F(x,)-F(xg) <0, we take the value x,=(x,+ x5)/2
and we study the sign of F(x,) F(x,) and F(x) F(xz). We
continue the dichotomy and we obtain the first root. According
to the values of A and D it is possible to obtain one, two, or
three roots between the lower and the upper bound (Figs. 5-8).
These roots correspond to the limiting frequencies of the LE 4,
LEy;, and LEy,, modes of the trough waveguide with periodic
corrugation [8] since we have realized our theoretical expres-
sions with the superposition of TE, ;, modes.

B. Experimental Methodology

We use a resonator loaded with one removable corrugation
situated between two movable short-circuit plates parallel to the
corrugation (Fig. 4). For a fixed value of H (Ly= L, =H /2) we
determine for each value of D the value of the resonant
frequencies of this cavity between 2 and 3.5 GHz given by the
sweep oscillator. At the resonance we observe a peak on the
oscilloscope and we read this frequency on the frequency meter.
It is possible to observe one, two, or three peak. It corresponds
to the limiting frequencies of LEy, LEy,;, and LEy,, modes
of the trough waveguides with the same periodic corrugation
(same values for H, for D, and for the thickness: e =5 mm)
(Figs. 5-8).

C. Comparison of Theoretical and Experimental Results

We compared the curves found with the theoretical results
using the three functions and the experimental values obtained
for different apertures and periodicities. We found the follow-
ing.
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1) When we estimate that the field near the corrugation edge
is described by a distribution, the experimental and theoretical
results agree closely when the values of the period are small
compared with the wavelength.

2) When we use Bethe and Meixner’s function, we have very
good results when the period is in the region of the wavelength
and the aperture is small compared with the latter.
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3) As a general rule, it is the exponential function which
provides, in most cases, results which are in good agreement
with experiment. Moreover, it is possible to fully realize the
summations with respect to m and so part of those concerning
p. So, the results are obtained with a short computing time with
a good approximation, the remaining summations having low
values compared with the other numerical values.

V. CONCLUSION

By a theoretical approach with the eigenmodes, we deter-
mined the value of the limiting frequency of an overdimen-
sioned rectangular cavity loaded by a zero-thickness corrugation.
For that, we assumed that the electric field in the corrugation
aperture is a distribution, an exponential variation, and an
inverse variation of the square of the distance from the aper-
ture. The theoretical results are obtained when we write that the
H, component of the magnetic field equals zero at the top of
the cavity and agrees with experiments. According to the value
of the wavelength in comparison with the aperture and the
period, each function is in good agreement in certain frequency
ranges.

APPENDIX

With some known expressions [11],

©  COS nx 7 coshw(m — x) 1 5
5 == - -, 0<x<2m
1 n?+w? 2 wsinhow 2w?
i (=D "cosnx = coshwx 1
=— " - - LXxX<T
= n’+ o’ 2 wsinhor 20%’
i(—l)m_lmsinmx 7 sinh xB
= — = —m<x<T
T m*+ B? 2 sinh B’
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it is possible to deduce for x =0,
® 1 T 1

)»

T n?+o? " 2wtanhor 2w?

and for  =ig, ie., w?=—a’,
> 1 ~ar 1
E 2 5= +—
T n°—a> 2atanam 24"
n
i (—=1) cosmx —mcosax 1
T nP-a? 2asinam  2a®
—1 . .
i (-D)" “msinmx 7 sinxA
T m? — A? 2 sinwAd’
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Design of New Hybrid-Ring Directional Coupler
Using A /8 or A /6 Sections

Dong Il Kim and Gyu-Sik Yang

Abstract —A method for designing 1.25A -ring and 7\ /6-ring 3 dB
directional couplers using fundamental A /8 or A /6 sections is pro-
posed and their frequency characteristics are analyzed. Furthermore,
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experimental verification has been achieved in a microstrip network,
confirming the validity of the design method for a microwave component
with the basic A /8 or A /6 sections proposed in this paper.

1. INTRODUCTION

The hybrid-ring directional coupler was one of the first and
remains one of the most fundamental junctions in the mi-
crowave and millimeter-wave frequency bands [1]-[6] where
one-axis symmetry is involved. Important properties possessed
by all directional couplers are 1) the output arms are isolated
from each other and 2) the input arms are matched looking into
any arm when the other arms are terminated by matched loads.
Since the conventional, simple Y-junction power dividers do not
possess these properties, directional cpuplers are preferable for
certain applications, for example aqtenna array feed systems
where the need for minimizing mutual coupling puts a premijum
on isolation between the output arms of the power dividers [2].

The two-dimensional structure of stripline facilitates construc-
tion of the feeding network and antenna elements, such as
dipoles, on a single printed circuit board. At high frequencies,
some applications make hybrid-ring couplers preferable to
branch-line and parallel-line couplers; the former has an inher-
ent 90° phase difference between the output ports. For an
antenna array that is fed by an equiphase, symmetrical, corpo-
rate network, the hybrid-ring directional coupler has a definite
advantage over the parallel-line and branch-line couplers be-
cause no phase-compensating element is necessary. The hybrid-
ring coupler also has a broader bandwidth than the branch-line
coupler [2], [4].

The hybrid-ring directional coupler is well known as a rat race
ring which is used for a 3 dB directional coupler with the
normalized admittance of 1/vy2 of the entire circumference of
the ring [5]. In 1961 Pon proposed a hybrid-ring coupler having
a power-split ratio that is proportional to the square of the
admittance ratio of the two variable admittances in the ring [2].
In 1982, Kim and Naito developed a broad-band design method
of improved hybrid-ring 3 dB directional couplers where the
concept of a hypothetical port was adapted [5]. In 1986, Agrawal
and Mikucki designed a hybrid-ring directional coupler with
arbitrary power divisions by adapting Pon’s method to Kim and
Naito’s concept of a hypothetical port [4]. However, all branch-
line couplers, parallel-line couplers, and hybrid-ring couplers,
including the rat-race ring, consist of a common fundamental
A /4 sections. In addition, most microwave components also use
fundamental A /4 lines.

In this paper, however, we propose a design method for 1.25A-
ring and 7A /6-ring 3 dB directional couplers using A /8 and
A /6 sections, respectively. In addition, the frequency character-
istics of the couplings, together with the isolations, the return
losses, and the phase differences between the output ports, are
calculated. ;

II. ANaLysis AND DESIGN OF A /8- AND A /6-SECTION
3 dB DirectioNnal COUPLERS

The conventional hybrid-ring directional coupler has the con-
figuration shown in Fig. 1 [2]. To increase the degree of freedom
of the design, while maintaining symmetry, we can replace the
characteristic admittance Y, of the 3A /4 section across the
symmetrical axis AA4" by Y; and replace the lengths A /4 and
3\ /4 of two sections across the symmetrical axis 44" by A /8

0018-9480 /91 /1000-1779$01.00 ©1991 IEEE



